Transport Physics of Density Limits

P.H. Diamond

Newton Institute, DAMTP, Cambridge and

U.C. San Diego

PPPL Seminar Feb. 8, 2024

→ Or...

"How the Birth and Death of Shear Layers

Determines Confinement Evolution:

From the L->H Transition to the Density Limit"

- → See as above, P.D. et al Phil Trans Roy Soc 381 (OV thru 2022)
- → Many refs. throughout

Collaborators:

Rameswar Singh, Ting Long, Rongjie Hong, Rui Ke, Zheng Yan, George Tynan, Rima Hajjar

Ackn:

Peter Manz, Martin Greenwald, Thomas Eich, Lothar Schmitz,

Andrew Maris, ...

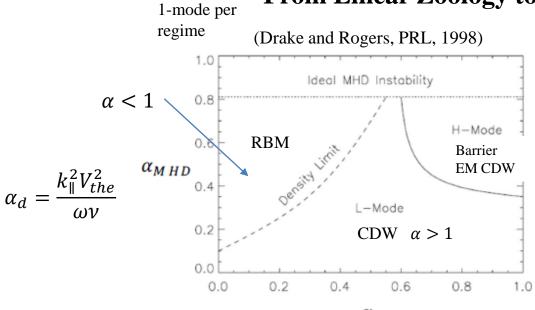
N.B.: Why Study Density Limits?

- Constraint on operating space
- Fusion power gain $\sim n^2$
- Attractive feedback loop ?! :

$$\begin{array}{cccc}
P_{fusion} & \sim & n^2 \\
n_{max} & \sim & P_{in}^{\alpha}
\end{array}$$

$$(0 < \alpha < 1)$$

Caveat Emptor


- Dual/Mixed theoretical and experimental approach
- Emphasis on L-mode density limit
- N.B. Negative Triangularity (NT) experiments open new roads forward (c.f. Sauter, Hong + DIII-D, submitted)
- DL as confinement transition ←→ exploit L→H experience

42 Years of H-mode – Lessons (1982 →)

- Saved MFE from Goldston scaling
- Introduced transport barrier, bifurcation → state 'phases' and transitions
- Role of flow profile in confinement (BDT '90)
- Dynamical feedback loops → Predator-Prey cycles, Zonal flows, etc.
 (PD+'94,05; K-D '03)
- Consequences of marked transport reduction
 - → Strong interest in turbulent pedestal states
- Applications elsewhere → Density Limit
 - N.B. Inhibition of L→H for sufficient NT poses challenge to L→H model

Preview: A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

- $\alpha_{MHD} = -\frac{Rq^2d\beta}{dr} \rightarrow \nabla P$ and ballooning drive to explain the phenomenon of density limit.
- Invokes yet another linear instability of RBM.
- What about density limit phenomenon in plasmas with a low β ?

(Hajjar et al., PoP, 2018, et. seq)

		<u>-</u>	
State	Electrons	Turbulence Regulation	
Base State - L-mode	Adiabatic or Collisionless $\alpha>1$ Weak damping	Secondary modes (ZFs and GAMs)	→ I-mode
H-mode	Irrelevant	Mean ExB shear ∇Pi/n	1-mode
Degraded particle confinement (Density Limit)	lpha < 1 or damped	None - ZF collapse due weak production	

Secondary modes and states of particle confinement

<u>L-mode</u>: Turbulence is *regulated* by shear flows, but not suppressed.

<u>H-mode</u>: *Mean ExB* shear $\leftrightarrow \nabla p_i$ suppresses turbulence and transport.

<u>Density Limit:</u> High levels of turbulence and particle transport, as shear flows collapse.

Unified
Picture →

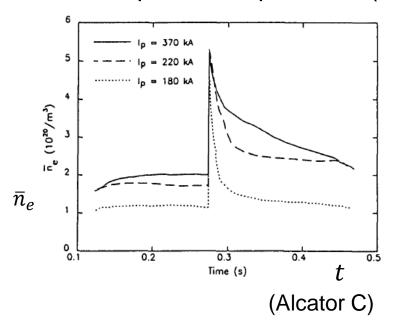
i.e. Shear Flow:

Edge shear - as - order parameter

 $L \rightarrow DL$ as a "back-transition"!?

Outline

- Density Limit Phenomenology
 - ←→ Phases and Transitions of Edge Plasma
- Some Theoretical Matters
 - ←→ Shear Layers and Their Degradation
- Power ←→ Separatrix Heat Flux Scaling of Density Limit: Dynamical Signatures
- Recent Developments
- To the Future


Phases and Transitions of the Edge Plasma and

Density Limit Phenomenology

A <u>Brief</u> History of Density Limits → Conventional Wisdom

- Greenwald $\bar{n}_G \sim I_p / \pi a^2$ (dimensions?)
- High density → edge cooling (transport?!)
- Cooling edge → MARFE (Multi-faceted Axisymmetric Radiation from the Edge) by Earl Marmar and Steve Wolfe
 MARFE = Radiative Condensation Instability in Strong B₀
 after G. Field '64, via J.F. Drake '87: Anisotropic conduction is key
- MARFE → Contract J-profile → Tearing, Island ... → <u>Disruption</u>
 after: Rebut, Hugon '84, ..., Gates ...
- But: more than macroscopics going on...

- Conventional Wisdom: Radiation + MHD (Rebut → Gates...)
- Argue: Edge Particle Transport is fundamental
 - 'Disruptive' scenarios <u>secondary</u> outcome, largely consequence of <u>edge cooling</u>,
 following fueling vs. increased particle transport → "Causality" issue
 - \bar{n}_g reflects fundamental limit imposed by <u>particle transport</u>
- An Important Experiment (Greenwald, et. al. '88)

- Density decays <u>without disruption</u> after shallow pellet injection
- \bar{n} asymptote scales with I_p
- Density limit enforced by transport-induced relaxation
- Relaxation rate not studied
- Fluctuations?

Shear Layer in L-mode? – Universal Feature of Edges

Shear layer impacts/regulates edge turbulence even in <u>Ohmic/L-mode</u>, enhanced in H-mode

• Ritz, et. al. 1990

$$v_{ph}$$
 - closed

$$v_{pl}$$
 - open

density

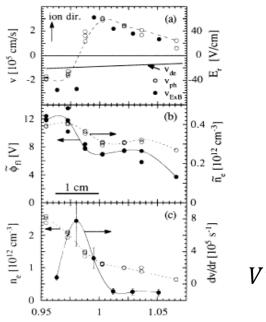


FIG. 1. Radial profiles for a discharge with $B_e = 2$ T, plasma current of 200 kA, and chord-averaged density of $n_{\rm chord} = 2 \times 10^{13}$ cm⁻³. (a) Phase velocity of the fluctuations $v_{\rm ph}$ (closed circles), $v_{\rm E, \times B}$ plasma rotation (open circles), and drift velocity $v_{\rm de}$. (b) Density and floating potential fluctuations. (c) Density and velocity shear. The statistical error for individual shots is of order the symbol size and shot-to-shot reproducibility is given by the individual symbols. The systematic error in the plasma position is 0.5 cm or $r/a \approx 0.02$.

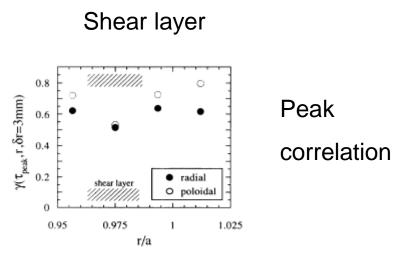


FIG. 3. Peak values of the normalized two-point correlation function for poloidally and radially separated probes with fixed separations of $\delta r = 3$ mm.

Title: "Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence" n.b. <u>not</u> H-mode!

→ Role of Shear Layer in L→DL?

Toward Microphysics: Recent Experiments - 1

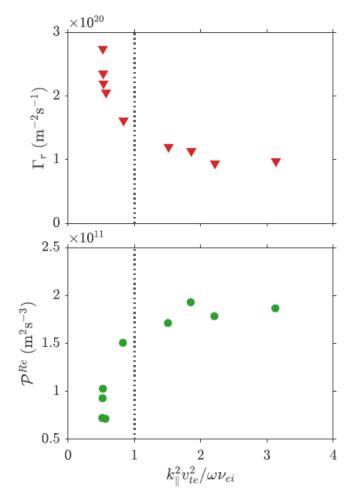
See also: Pedrosa '07, Hidalgo '08 ...

(Y. Xu et al., NF, 2011)

LRC vs \bar{n}

- Decrease in maximum correlation value of LRC (i.e. ZF strength) as line averaged density \bar{n} increases at the edge (r/a=0.95) in both TEXTOR and TJ-II.
- The reduction in LRC due to increasing density is also accompanied by a reduction in edge mean radial electric field (Relation to ZFs).

Is density limit related to edge shear decay?!

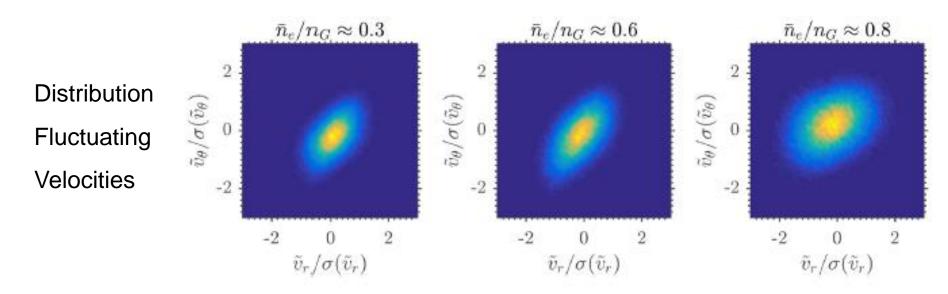

Yes!

Reynolds work (Flow production) drops as $n \rightarrow n_G$ (Hong+ '18)

Reynolds Power (Flow Production)

• Studies of $P_{Re} = -\langle \tilde{v}_r \tilde{v}_\theta \rangle \partial \langle V_E \rangle / \partial r$ vs n/n_G

$$\alpha = k_{\parallel}^2 V_{the}^2 / \omega v$$



Particle flux surges for $\alpha > 1$

 P_{Re} drops for $\alpha < 1$

Is DL evolution linked to degradation of edge shear layer?

Fluctuation + $n/n_G scan$, R. Hong et. al. (NF 2018)

- Joint pdf of \tilde{V}_r , \tilde{V}_θ for 3 densities, $\bar{n} \to n_G$
- $r r_{sep} = -1cm$
- Note:

- Tilt lost, symmetry restored as $\bar{n} \rightarrow \bar{n}_g$
- Consistent with drop in P_{Re} observed

Weakened shear flow production by Reynolds stress

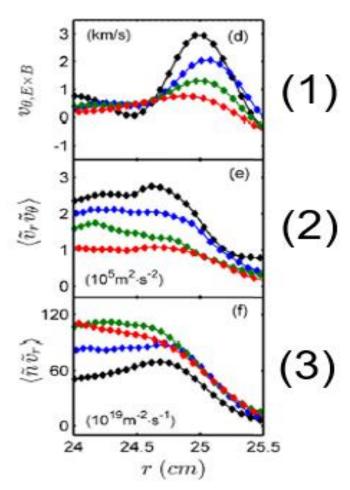
as $n \rightarrow n_G$

An In-depth Look at More Recent Experiments

Ting Long, P.D. et. al. 2021 NF

Rui Ke, P.D., T. Long et. al. 2022 NF

N.B. These experiments are 'theoretically motivated"


J-TEXT - Ohmic

•
$$B_T \sim 1.6 - 2.2 T$$
 $\frac{n}{n_G} \sim 0.7$ $n_G \sim 6.4 \rightarrow 9.3 \times 10^{19} m^{-3}$

Black -
$$0.3n_G$$

Blue - $0.34n_G$
Green - $0.6n_G$
Red - $0.63n_G$

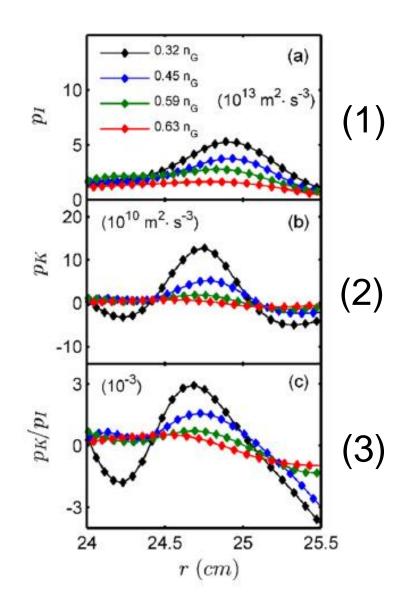
•
$$I_p \sim 130 - 190 \, kA$$
 $\bar{n} \sim 2.0 - 5.3 \times 10^{19} m^{-3}$

- Principal Diagnostics: Langmuir Probes
 - Shear layer collapses as n/n_G increases (1)
 - Turbulence particle flux increases (3)
 - Reynolds stress decays (2)
 - Velocity fluctuation PdF → symmetry

Mean-Turbulence Couplings

In standard CDW model:

Production \equiv Input from ∇n


$$\delta n = \tilde{n}/n_0$$

$$P_{I} = -c_{s}^{2} \langle \tilde{V}_{r} \delta n \rangle \left(\frac{1}{n_{0}} \frac{\partial \langle n \rangle}{\partial r} \right)$$

Reynolds Power ≡ Coupling to Zonal Flow

$$P_k = -\langle \tilde{V}_r \tilde{V}_\theta \rangle \langle V_E \rangle'$$

- Reynolds power drops as n/n_G rises (see Hong+,'18) (2)
- $-P_k/P_I$ drops as n/n_G rises (3)
- → Fate of the Energy?
- →Where does it go?

Fate of the Energy?

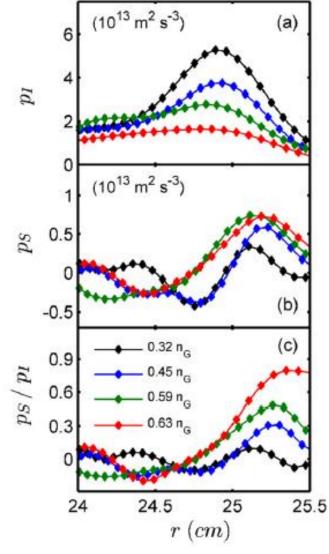
Turbulence Energy Budget

Triplet Production
$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial}{\partial r} \langle v_r \varepsilon \rangle = P_I - \text{Dissipation}$$
 Spreading
$$\varepsilon = \varepsilon_k + \varepsilon_I \qquad \varepsilon_I = \frac{c_s^2}{2} \left< (\tilde{n}/n_0)^2 \right> \qquad \text{(Internal Energy)}$$

Then P_S → Power coupled to fluctuation energy flux → <u>Turbulence</u>
 <u>spreading</u>

$$P_S = -\partial_r \langle \tilde{v}_r \varepsilon_I \rangle = -\partial_r \langle \tilde{v}_r \tilde{n}^2 c_s^2 \rangle / 2n^2$$
 — Turbulence Spreading Power

Turbulence Spreading encompasses "Blob" and "Void" propagation

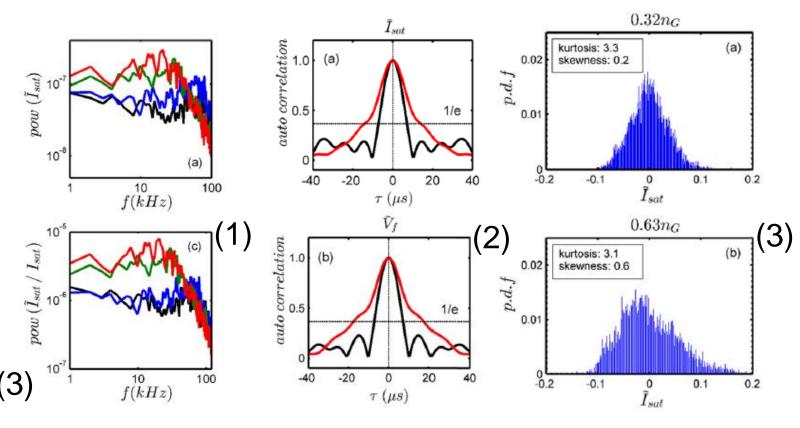

Fate of the Energy, Cont'd

- Turbulence Spreading!
 - Reynolds power drops
 - P_s increases; transitions $P_s < 0$ to $P_s > 0$
- Where does the shear layer energy go?

$$(P_k/P_I)_{peak} \times (P_s/P_I)_{peak} \sim 0.3, 0.5, 0.4, 0.4 \times 10^{-3} \text{ as } n/n_G \uparrow$$

≈ constant

Energy diverted from shear layer to spreading at L→DL


• N.B. Recent result (Long + 2024, submitted): δ (spreading flux) is more robust indicator of DL then δ (particle flux)

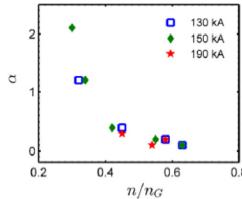
Characteristics of Spreading

- Low frequency content of \tilde{I}_{sat}/I_{sat} increases (1)
- \tilde{I}_{sat} autocorrelation time increases (2)

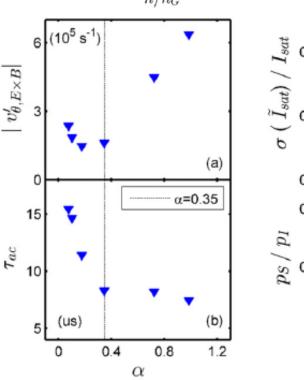
Pdf \tilde{I}_{sat} developes positive

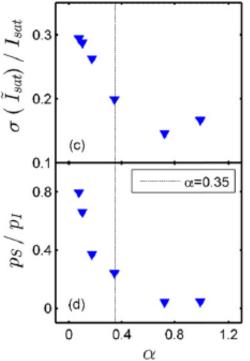
skewness as n/n_G increases (3)

See also T. Long, P.D.+ submitted 2023 for \tilde{n} skewness $\leftarrow \rightarrow$ spreading correlation and in \rightarrow out symmetry breaking


Characteristics of Spreading, Cont'd

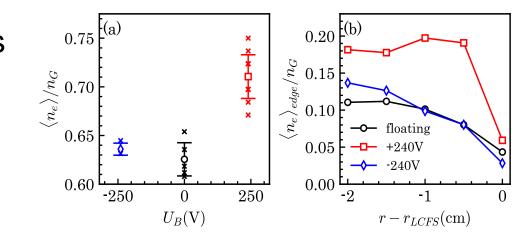
- Enhanced turbulent particle transport events accompany L→DL back transition
- Events are quasi-coherent density fluctuations. Diffusive model of spreading dubious
- Localized over-turning events, small avalanches, "blobs", ...


- N.B. "The limits of my language means the limits of my world."
 - Ludwig Wittgenstein
- Blob ejection → recycling → cold neutral influx → cooling + MHD trigger


Is there a key parameter? - Adiabaticity!

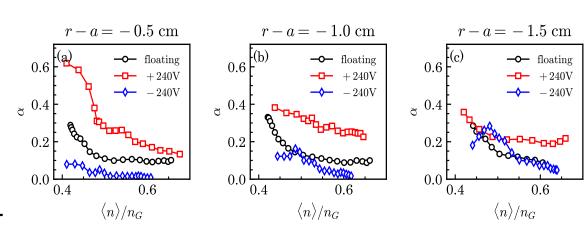
- Adiabaticity $\alpha = k_{\parallel}^2 V_{the}^2/\omega v$ α drops < 1 as n/n_G increases
- V_E' rises with $\alpha \uparrow$ τ_{ac} decreases with $\alpha \uparrow$ $\sigma(\tilde{I})/I$ decreases with $\alpha \uparrow$ P_S/P_I decreases with $\alpha \uparrow$

N.B. $k_{\parallel} = 1/Rq$ assumed


The Obvious Question

- Can <u>driving the shear layer</u> sustain high densities, where L→DL, otherwise ?
- "Driving" bias electrode here (J-TEXT). Not a conventional H-mode
- Long history of bias-driven shear layers in L→H saga R.J. Taylor, et. seq.
- Recent: Shesterikov, Xu et. al. 2013 Textor
- Electrode $\rightarrow J_r \rightarrow V_\theta \rightarrow V_E'$ etc.
- New Here?
 - High Density
 - Gas Puffing → push on DL
 - Analysis

c.f. Rui Ke, P.D. + NF 2022

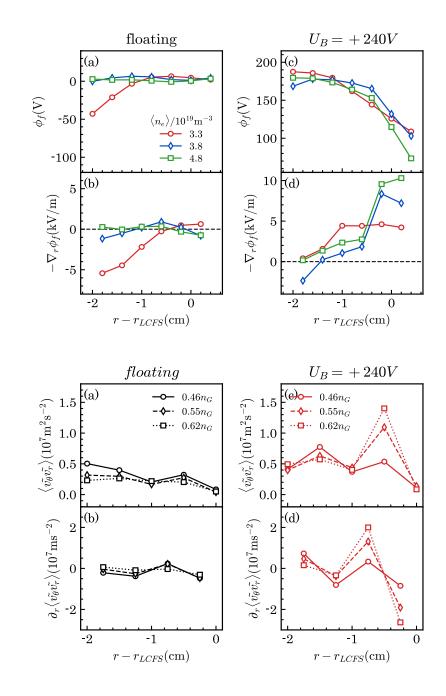

The Answer – Looks Promising!

- Edge density doubled for +240V bias
- $\bar{n}_{\text{max,bias}} > \bar{n}_{\text{max,float}}$
- Note: $\bar{n}_{\text{max,float}} \sim 0.7 n_G$

Experiment limited by graphite probe sputtering

- Key parameter?
 - $-\alpha$ systematically higher with +bias
 - $-\alpha \sim T^2/n$ Reduced transport \rightarrow higher T

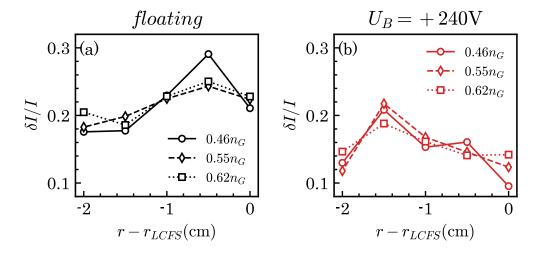
Turbulence spreading quenched by positive bias

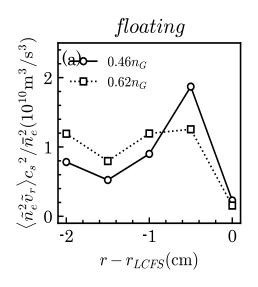

The Physics

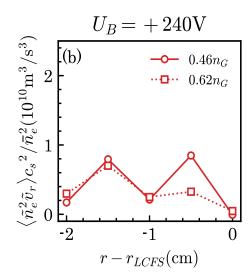
Edge Shear Layer produced for +bias

N.B. Not an E_r well

- Reynolds stress, force increase for +bias
- ←→ bias effect on eddy alignment

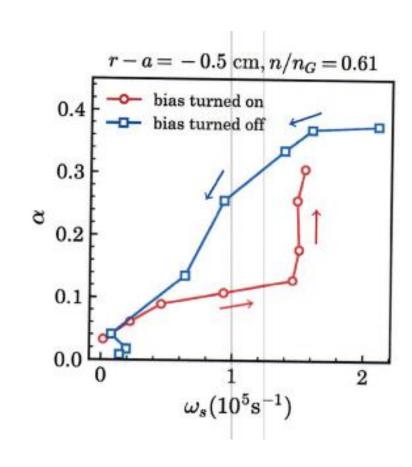

"Shearing" ←→ interplay of bias and Reynolds stress




The Physics

• $\delta I/I$ ($\rightarrow \tilde{n}/n$) fluctuations sharply reduced by +bias

Turbulence spreading quenched by +bias



Key Parameter vs Control Parameters

- α vs ω_{shear} exhibits hysteresis loop
- Cntr clockwise rotation $\rightarrow \omega_{shear}$ 'leads' α
- Is α unique 'key parameter'?
- For drift waves, $\alpha \sim T^2/n$
 - → shear ↑ → turbulence ↓ → heat transport ↓
 - $\rightarrow \alpha$ increases
- Is ω_{shear} the control parameter?

Ongoing and Future Work

- Bias experiment with improved probe
- Ip scan vs n/n_G scan ? obvious 'Greenwald test' (Long+ 2024, submitted): Ip ramp down explained via $\omega_{shear} \, \tau_{cor}$
- Physics of spreading (Long, PD+ 2023)
 - Spreading ←→ Blob emission
 - Broken symmetry: "Spreading" dominated by large blobs

Some Theoretical Matters

- → Shear Layer Physics
 - Degradation / Collapse
 - Support → Power

Step Back: Zonal Flows Ubiquitous! Why?

• Direct proportionality of wave group velocity and wave energy density flux to Reynolds stress $\leftarrow \rightarrow$ spectral correlation $\langle k_x k_y \rangle$

Causality ←→ Eddy Tilting

i.e.

$$\omega_k = -\beta k_x/k_\perp^2$$
: (Rossby)

So:
$$V_g > 0 \ (\beta > 0) \iff k_x k_y > 0 \implies \langle \tilde{V}_y \tilde{V}_x \rangle < 0$$

Propagation \iff Stress

Outgoing waves generate a <u>flow convergence!</u> → <u>Shear layer spin-up</u>

But NOT for hydro convective cells: (i.e. α < 1)

- $\omega_r = \left[\frac{|\omega_{*e}|\widehat{\alpha}}{2k_\perp^2 \rho_s^2}\right]^{1/2} \rightarrow \text{for convective cell of H-W (enveloped damped)}$
- $V_{gr} = -\frac{2k_r\rho_s^2}{k_\perp^2\rho_s^2} \omega_r$ $\leftarrow ?? \rightarrow \langle \tilde{V}_r \tilde{V}_\theta \rangle = -\langle k_r k_\theta \rangle$; direct link broken!
- → Energy flux NOT simply proportional to Momentum flux →

- \rightarrow Eddy tilting $(\langle k_r k_\theta \rangle)$ does <u>not</u> arise as direct consequence of causality
- → ZF generation <u>not</u> 'natural' outcome in hydro regime!
- ightharpoonup Physical picture of shear flow collapse emerges, as change in branching ratio of vorticity flux to particle flux as α drops
- N.B. Generic mechanism, not linked to specific "mode"

$$\alpha < 1 \Rightarrow RBM$$

Simulations!?

- Extensive studies of Hasegawa-Wakatani system for $k_{\parallel}^2 V_{the}^2/\omega \nu < 1$, > 1 regimes.
 - i.e. Numata, et al '07
 - Gamargo, et al '95
 - Ghantous and Gurcan '15
 - + many others
- All note weakening or collapse of ordered shear flow in hydrodynamic regime $(k_{\parallel}^2 V_{the}^2 / \omega v < 1)$, which resembles 2D fluid/vortex turbulence i.e. $\alpha < 1$
- Physics of collapse left un-addressed, as adiabatic regime $(k_{\parallel}^2 V_{the}^2/\omega v)$ dynamics of primary interest ZFs
- Shear Layer Collapse ↔ α < 1 Generic

What of the Current Scaling?

- Obvious question: How does shear layer collapse scenario connect to Greenwald scaling $\bar{n} \sim I_p$?
- Key physics: shear/zonal flow response to drive is 'screened' by neoclassical dielectric

i.e.
$$-\epsilon_{neo} = 1 + 4\pi \rho c^2 / B_{\theta}^2$$

- $-\rho_{\theta}$ as screening length
- effective ZF inertia lower for larger I_p

N.B.: Points to ZF response as key to stellarator.

Current Scaling, cont'd

Shear flow drive:

emission from 'drift-mode' interaction

incoherent demission

$$S \rightarrow polarization NL$$

$$\frac{d}{dt} \left[\langle \left(\frac{e\phi}{T} \right)^2 \rangle_{ZF} \right] \approx \frac{\sum_{k} \left| S_{k,q} \right|^2 \tau_{c_{k,q}}}{|\epsilon_{neo}(q)|^2}$$

Nonlinear Noise

production

- Production ←→ beat drive
- Response (neoclassical)
- Rosenbluth-Hinton '97 et seq (extended)

Increasing I_p decreases ρ_{θ} and off-sets weaker ZF drive

neoclassical response

$$\left(\frac{e\hat{\phi}}{T}\right)_{ZF} \approx \int \frac{S_{k,q}}{\left(1 + 1.16 \frac{(q(r))^2}{\epsilon^{1/2}}\right) q_r^2 \rho_i^2} dt$$
classical zonal wave #

Current Scaling, cont'd

$$\left(\tilde{V}_{E}'\right)_{Z} \approx \frac{S_{k,q}}{\left[\rho_{i}^{2} + 1.6\epsilon_{T}^{\frac{3}{2}}\rho_{\theta i}^{2}\right]} \sim P \frac{\left(\frac{e\phi}{T}\right)^{2}}{\rho_{\theta i}^{2}} \sim B_{\theta}^{2} P \left(\frac{e\phi}{T}\right)_{DW}^{2}$$

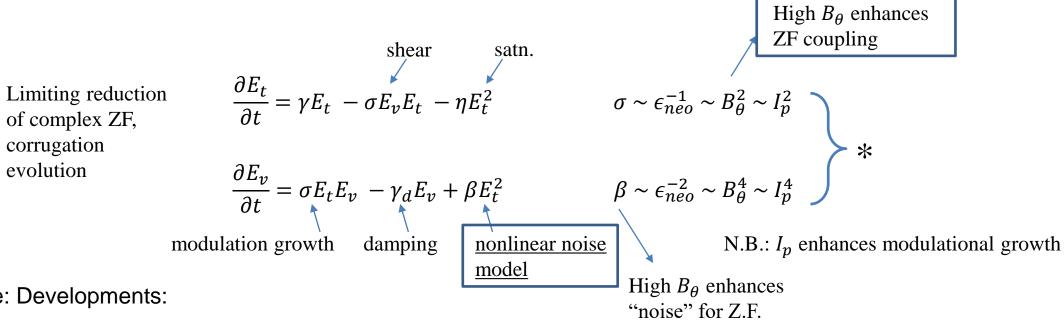
production factor

Production $\leftrightarrow \tau_c$

- Higher current strengthens ZF shear, for fixed drive
- Can "prop-up" shear layer vs weaker production
- Collisionality? Edge of interest!?

Screening in the Plateau Regime!? (Relevant) N.B. Ions!

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \frac{\epsilon^2/q(r)^2}{\left(\epsilon/q(r)\right)^2 + L} \approx \frac{\epsilon^2/q(r)^2}{L} = \frac{1}{L} \left(\frac{B_\theta}{B_T}\right)^2$$


$$L = \frac{3}{2} \int_{0}^{1-\epsilon} d\lambda \frac{\int d\theta}{2\pi} h^{2} \rho \approx 1 - \frac{4}{3\pi} (2\epsilon)^{3/2}$$

- Favorable I_p scaling of time asymptotic RH response persists in plateau regime. Robust trend.
- Compare to Banana (L = 1);

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \left(\frac{B_\theta}{B_T}\right)^2$$
 Current scaling but smaller ratio

Revisiting Feedback in Reduced Model (c.f. Singh, P.D. PPCF '21)

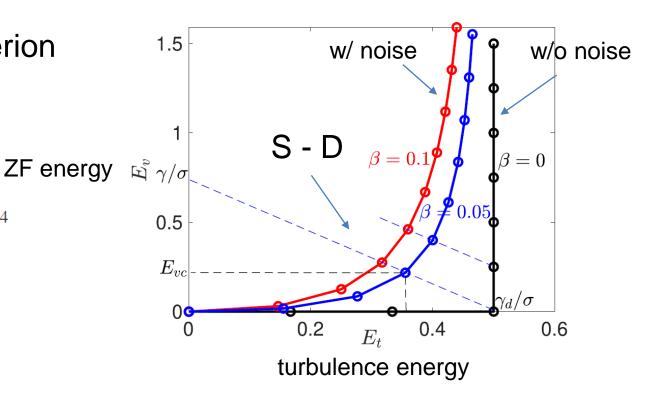
How combine noise, neoclassical dielectric and feedback dynamics? → back to Predator-Prey...

Re: Developments:

- Zonal flow and turbulence always co-exist *
- Zonal flow energy increases with current
- Turbulence energy never reaches 'old' modulation threshold
- Zonal cross-correlation import TBD

cf: extends P.D. et. al. '94; Kim, PD '03

Criterion for Shear Layer Collapse

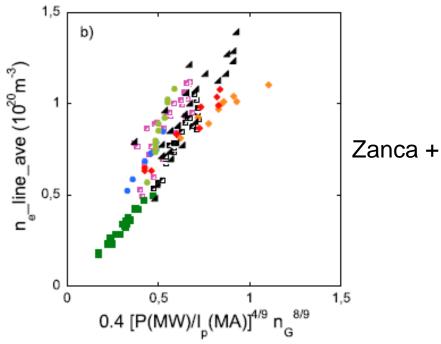

• For collapse limit, criterion without noise is viable approximation to with noise

Derive shear layer persistence criterion

$$\frac{\rho_{s}}{(\rho_{\theta}L_{n})^{\frac{1}{2}}} > \text{crit.}$$

$$\text{crit.} = \left[\frac{\eta}{\Omega_{i}} \frac{\gamma_{d}}{2k_{x}^{2}\rho_{s}^{2}\Theta\Omega_{i}^{2}} \frac{\hat{\alpha}}{q_{\perp}^{2}\rho_{s}^{2}} \frac{(1+q_{\perp}^{2}\rho_{s}^{2})^{3}}{q_{y}^{2}\rho_{s}^{2}}\right]^{1/4}$$

ightharpoonup Dimensionless parameter $\frac{\rho_{S}}{(\rho_{\theta}L_{n})^{\frac{1}{2}}}$


Larger B_{θ} enhances persistence of ZF

Power Scaling and <u>Physics</u> of L-mode Density Limit (Singh, P.D. PPCF 2022)

- Power Scaling is an old story, keeps returning
- Zanca+ (2019) fits $\rightarrow \bar{n} \sim P^{0.4}$

- Observe: $Q_i|_{\text{bndry}}$ will drive shear layer \rightarrow LH mechanism
- So: $P_{\text{scaling}} \leftrightarrow \text{shear layer physics: a natural connection}$

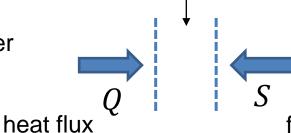
Expanded Kim-Diamond Model

- KD '03 useful model of L→H dynamics (0D)
- See also Miki, P.D. et al '12, et. seq. (1D)
- Evolve ε , V_{ZF} , n, T_i , V'_E

$$\leftarrow \rightarrow$$

- Treats mean and zonal shearing
- Separates density and temperature contributions to P_i
- Heat and particle sources Q, S
- N.B. i) ZeroD → interpret as edge layer
 - ii) Does not determine profiles
 - iii) Coeffs for ITG

$$\frac{\partial \mathcal{E}}{\partial t} = \frac{a_1 \gamma(\mathcal{N}, \mathcal{T}) \mathcal{E}}{1 + a_3 \mathcal{V}^2} - a_2 \mathcal{E}^2 - \frac{a_4 v_z^2 \mathcal{E}}{1 + b_2 \mathcal{V}^2}$$
 Fluctuation Intensity

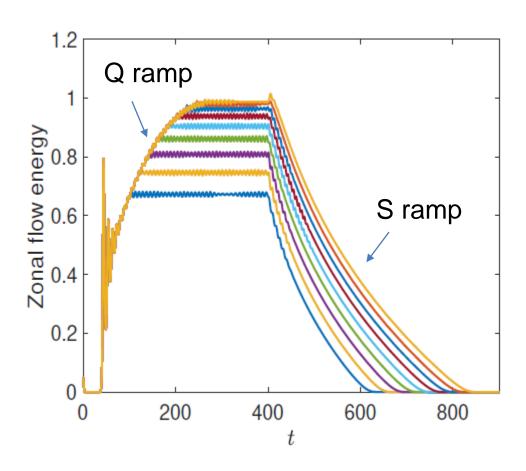

$$\frac{\partial v_z^2}{\partial t} = \frac{b_1 \mathcal{E} v_z^2}{1 + b_2 \mathcal{V}^2} - b_3 n v_z^2 + b_4 \mathcal{E}^2$$
 Zonal Intensity

$$\frac{\partial \mathcal{T}}{\partial t} = -c_1 \frac{\mathcal{E}\mathcal{T}}{1 + c_2 \mathcal{V}^2} - c_3 \mathcal{T} + Q \qquad T_i$$
 $Q \rightarrow \text{power}$

$$\frac{\partial n}{\partial t} = -d_1 \frac{\mathcal{E}n}{1+d_2 \mathcal{V}^2} - d_3 n + S$$
 $S \rightarrow \text{fueling}$ shear

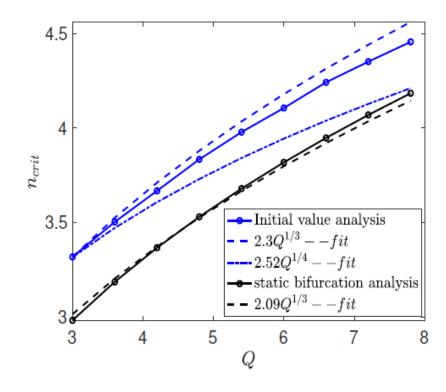
$$V_E' = -\rho_i v_{thi} L_n^{-1} (L_n^{-1} + L_T^{-1})$$
 Shear (mean)

$$\mathcal{V} \equiv \frac{V_E'a}{\rho^*v_{thi}} = -\frac{n_0}{n}\mathcal{N}\left(\frac{n_0}{n}\mathcal{N} + \frac{T_0}{T}\mathcal{T}\right)$$


edge layer

fueling

L → DL Studies: Shear Layer Physics ←→ Power Scaling


- Look for shear layer collapse
- Q ramp-up to L-mode, followed by S ramp-up
- Oscillations → predator-prey cycles
- n for ZF collapse increases with Q

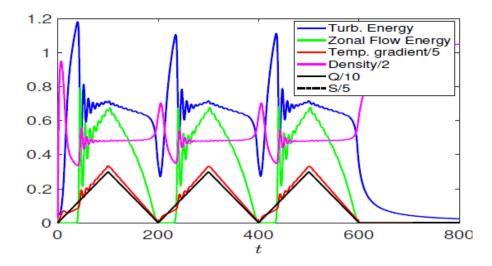
scaling of n_{crit} emerges

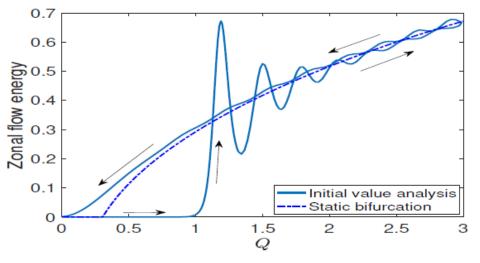
Power Scaling: LDL

- $n_{\rm crit} \sim Q^{1/3}$
- Distinct from Zanca, but close (model)
- In K-D, with neoclassical screening $n_{crit} \sim I_p \rightarrow I_P^2$
- Physics is $\gamma(Q)$ vs ZF damping
- Shear layer drive underpins power scaling

Physics: $Q_i \rightarrow$ Turbulence \rightarrow Reynolds Stress \rightarrow ZF shear Increased ZF damping \rightarrow Confinement degradation

NB: Unavoidable model dependence in scalings


Beyond Scalings: L→DL 'Transition' Physics


"If it Flux Like a Duck... (M.N. Rosenbluth, after F. Wagner)"

- Expected, given 2 states transport
- Not familiar bistability!
- Physics <u>prediction</u>... beyond scaling

Also:

- Is there torque effect of density limit, i.e. $\nabla P/n$ vs $B_{\theta}V_{\phi}$?
- Torque ←→ V'_E
 Mean field
 Reyn. stress coherence

Recent: NT Density Limit Studies (DIII-D) (Sauter, Hong+ 2023)

• $\bar{n} \sim 2 n_G$ achieved with ~ 10 MW NBI. No disruption

Stay Tuned

- NT greatly expands dynamic range of L-mode by preventing L→H transition. Allows separation LDL, HDL.
- \bar{n} , n_{edge} both scale as P^{α}

$$\bar{n} \rightarrow \alpha \sim 0.3$$

Caveat Emptor

$$n_{edge} \rightarrow \alpha \sim 0.4$$

- Confinement degrades above n_G ? Major question...
- V'_E effects noted

NB: High β_p , peaked density DIII-D does not degrade τ_E above n_G (DIII-D; Ding, Garofalo+...)

From L-DL to H-DL

- H-mode density limit is back transition H→L at high density,
 usually followed by progression to n_{Greenwald}
- Key issue! Gentle "pump-and-puff" (Mahdavi) has beat Greenwald
 ←→ strong shear layer...
- Candidates
 - AUG: α_{MHD} at separatrix (Eich, Manz)

$$\lambda: v_D * \begin{cases} \tau_T \\ \tau_{cond} \end{cases}$$

- Goldston, Brown: Conduction broadens SOL, reduces $V'_E \rightarrow$
- So instability calculated & inward spreading <u>hypothesized</u>

$$\gamma = c_s/(\lambda R)^{1/2} - \phi/\lambda^2$$

- Experiments needed!
 - c.f. Dog + Tail ? → track inward spreading ?!

N.B. Physics of Back Transition is key to HDL. What degrades ExB shear, absent ELMs

Conclusions: V'_E as Edge Order Parameter

- Density limits as "back-transition" phenomena; V'_E physics crucial
- L-DL mechanism:
 - Shear layer degradation
 - Strong turbulence spreading → Blob emission
- α is key parameter, but not only
- Scalings of L-DL emerge from zonal flow physics
 - I_p scaling → neo dielectric
 - P scaling → Reynolds stress, radial force balance
- Novel hysteresis evident in L-DL dynamics
- H→DL back transition trigger unclear. Back Transition is key.

Speculations / Questions

- Is H-DL due turbulent degradation of V'_E in pedestal? Mechanism?
- Can external means be used to enhance edge density?
- Is there a L-mode edge with $\alpha > 1$ and $n > n_G$?
- Collisionless regimes? ∇n TEM.
- D-L-H triple point, ala' phase transitions?
- New states:
 - Neg. Tri. at high n, P? Features of edge plasma?
 - Power Density feedback loop in burning plasma?
- Origin of confinement degradation at high density?

Thank You!

Supported by U.S. Dept. of

Energy under Award Number

DE-FG02-04ER54738